The effects of alcohol use on people living with HIV/AIDS: an integrative review

Vanessa da Frota Santos¹, Gilmar Holanda da Cunha², Marli Teresinha Gimeniz Galvão³, Ivana Cristina Vieira de Lima⁴, Elucir Gir⁵, Ana Karoline Bastos Costa⁶

ABSTRACT

The aim of this study was to analyze the scientific production on the effects of alcohol use on people with HIV/AIDS. This is an integrative review carried out in October 2017 using the following databases: LILACS, SciELO, MEDLINE, CINAHL, Scopus, Cochrane and Web of Science. The descriptors "Acquired Immunodeficiency Syndrome", "HIV" and "Alcohol" were used in Portuguese, English and Spanish, with the Boolean operator "AND". A total of 2,355 articles were found, and 46 were selected for the study. The data were organized into four thematic categories: the effects of alcohol on adherence to antiretroviral therapy; neurological and metabolic effects of alcohol; increased risk of HIV transmission and disease progression. It is concluded that HIV/AIDS and alcohol consumption have a synergistic effect on the lives of people with HIV, causing them greater health harm (with emphasis on neurological and metabolic alterations), low adherence to treatment, increased virus transmission and disease progression.

Descriptors: HIV; Ethanol; Acquired Immunodeficiency Syndrome.

¹ Nurse, Master of Nursing. Student of the Graduate Program in Nursing, Doctoral degree, at the Federal University of Ceará. Professor at College Athenaeum. Fortaleza, Ceará, Brazil. E-mail: doutorandavanessasantos@outlook.com.
² Nurse, Ph.D. in Nursing. Adjunct Professor at the Federal University of Ceará. Fortaleza, Ceará, Brazil. E-mail: gilmaraholandaufc@yahoo.com.br.
³ Nurse, Ph.D. in Tropical Diseases. Adjunct Professor at the Federal University of Ceará. Fortaleza, Ceará, Brazil. E-mail: marligalvao@gmail.com.
⁴ Nurse, Ph.D. in Nursing. Substitute Professor at the State University of Ceará. Fortaleza, Ceará, Brazil. E-mail: doutorandaviana@gmail.com.
⁵ Nurse, Ph.D. in Nursing. Full professor at the Ribeirão Preto College of Nursing, at the University of São Paulo. Ribeirão Preto, São Paulo, Brazil. E-mail: egir@eerp.usp.br.
⁶ Undergraduate student in Nursing at the Federal University of Ceará. Fortaleza, Ceará, Brazil. E-mail: anakaroline14@hotmail.com.

Received: 05/02/2017. Accepetd: 04/03/2018. Published: 12/31/2018.

Suggest citation:
INTRODUCTION

Despite advances in reducing the spread of the acquired immunodeficiency virus (HIV), the number of people affected by it continues to rise worldwide[1]. Associated with this, alcohol abuse is observed in this population; which is a serious health problem with social, economic and psychological repercussions[2].

With the use of antiretroviral therapy (ART), there has been a significant reduction in morbidity and mortality associated with HIV; which makes it a chronic disease. This fact led to an increase in life expectancy and the susceptibility to the acquisition of risk habits, such as alcohol consumption, which tends to be more prevalent in people living with HIV/AIDS (PLHA) when compared to the general population[1-2]. It is estimated that 44.0% of these individuals have problems with the use of alcohol and other drugs[3].

Alcohol consumption negatively influences the health status of PLHA[4] and is associated with unprotected sex (without the use of condoms)[5], which increases the likelihood of transmitting HIV and other sexually transmitted infections[2]. Moreover, it may compromise quality of life and adherence to treatment, accelerating the progression of the disease[3].

In light of this, it is essential for health professionals (especially nurses) to know the effects of alcohol use in PLHA, in order to prevent or reduce harm associated with this substance, by stimulating the acquisition of healthy lifestyle habits and self-care.

Aiming to contribute to the health care of PLHA, the goal of this study is to analyze the scientific productions about the effects of alcohol use on people living with HIV/AIDS.

METHOD

This is an integrative literature review developed through the following stages: elaboration of the guiding question, literature search, data collection, critical analysis of the results, and presentation of the integrative review[5].

The following guiding question was formulated based on the PICO strategy[6]: “What is the effect of alcohol use on people living with HIV/AIDS?” The inclusion criteria consisted of complete articles available electronically in Portuguese, English and Spanish, with no temporal cut. Duplicate publications were excluded and grouped in the database together with other articles that either did not respond to the research question or involved animals.

The electronic search was conducted simultaneously by two reviewers, in October 2017, in five databases: Cumulative Index to Nursing and Allied Health Literature (CINAHL), Latin American and Caribbean Health Sciences Literature (LILACS), Scientific Electronic Library Online (SciELO), Web of Science, and Scopus. The Medical Literature Analysis and Retrieval System Online portal (MEDLINE/PubMed) and the Cochrane Library were also searched. The descriptors used were "Acquired Immunodeficiency Syndrome", "HIV" and "Alcohol", available at the Medical Subject Headings (MeSH), produced by the National Library of Medicine, and at the Health Sciences Descriptors (DeCS); in Portuguese, English and Spanish, using the Boolean operator "AND".

From the crossings that arose, a total of 2,355 articles were found, of which 46 were selected. Twenty-four duplicate publications were excluded, together with 2,285 articles addressing the relationship between alcohol and other drugs in uninfected people, and risk behaviors for HIV acquisition. Figure 1 shows the identification, selection and inclusion of the scientific productions.
Figure 1: Flowchart for identification, selection and inclusion of the studies.

```
“What is the effect of alcohol use on people living with HIV/Aids?”
```

Data analysis was done by the translation and full reading of the articles, by two authors, independently. In case of doubts, there was a meeting between the reviewers for consensus. The information was transcribed and organized using a validated instrument\(^7\) that investigated: the methodological development, the effects of alcohol use on PLHA, the conclusion, and the levels of evidence.

The levels of evidence were determined as follows: Level I - Evidence from a systematic review or meta-analysis of multiple randomized controlled clinical studies or from clinical guidelines based on systematic reviews of randomized controlled trials; Level II - Evidence from individual randomized controlled studies; Level III - Evidence from experimental studies without randomization; Level IV - Evidence from cohort or case-control studies; Level V - Evidence from a systematic review of descriptive and qualitative studies; Level VI - Evidence from a descriptive or qualitative study; Level VII - Evidence obtained from opinions of authorities or expert committees report\(^8\).

After the analysis, the effects of alcohol use on PLHA were grouped into four categories: 1. Neurological and metabolic effects of alcohol; 2. Effects of alcohol on ART adherence; 3. Increased risk of HIV transmission, and 4. Increased disease progression. The findings were discussed based on the scientific literature on the subject, respecting copyright and the integrity of the articles, so that no modification of content was made for the benefit of this research.

RESULTS

Regarding the characterization of the articles selected, the year of publication ranged from 1993 to 2017. Eleven were published in European countries\(^{10,12,15-16,20,24,36-37,45,52,54}\), twenty-eight in the United States\(^{17-19,21-22,25-33,38-44,46-48,50,52-54}\), four in Brazil\(^{9,23,34-35}\), two in the Asian continent\(^{13-14}\) and one in the African continent\(^{11}\) (Table...
The analysis of the levels of evidence showed the following distribution: two level I[40-41], two level II[17,26], fifteen level IV[15-16,27,30,32,33,39,38,42-47,49,51-42], six level V[18,29,35-38], and twenty-one level VI[19-14,19-25,28,31,34,43,48,50,53-54].

Table 1: Characterization of the studies according to journal, year, country, type of study, and outcome in PLHA. Fortaleza, Ceará, Brazil, 2017.

<table>
<thead>
<tr>
<th>Journal</th>
<th>Year</th>
<th>Country</th>
<th>Type of study</th>
<th>Outcome in PLHA</th>
</tr>
</thead>
<tbody>
<tr>
<td>BMC Infect Dis.</td>
<td>2017</td>
<td>Brazil</td>
<td>Cross-sectional study</td>
<td>Low CD4+ T lymphocyte count</td>
</tr>
<tr>
<td>Addict Behav.</td>
<td>2016</td>
<td>England</td>
<td>Cross-sectional study</td>
<td>Increased anxiety sensitivity</td>
</tr>
<tr>
<td>PloS one.</td>
<td>2015</td>
<td>South Africa</td>
<td>Cross-sectional study</td>
<td>Failure and interruption of treatment</td>
</tr>
<tr>
<td>AIDS Care.</td>
<td>2015</td>
<td>England</td>
<td>Cross-sectional study</td>
<td>CD4+ T lymphocyte count less than 200 cells / mm³</td>
</tr>
<tr>
<td>AIDS Care.</td>
<td>2015</td>
<td>Russia</td>
<td>Cross-sectional study</td>
<td>Reduced adherence to ART</td>
</tr>
<tr>
<td>BMC Public Health</td>
<td>2014</td>
<td>Vietnam</td>
<td>Cross-sectional study</td>
<td>Reduced adherence to ART and reduced quality of life</td>
</tr>
<tr>
<td>Curr Res HIV.</td>
<td>2014</td>
<td>Holland</td>
<td>Cohort study</td>
<td>Neurocognitive disorders, such as reduction of brain-derived neurotrophic factor</td>
</tr>
<tr>
<td>Brain Pathol.</td>
<td>2014</td>
<td>Switzerland</td>
<td>Cohort study</td>
<td>Elevated levels of neuroinflammation markers</td>
</tr>
<tr>
<td>Subst Abus.</td>
<td>2014</td>
<td>United States</td>
<td>Clinical trial</td>
<td>Prevalence of depressive symptoms</td>
</tr>
<tr>
<td>Behav Med.</td>
<td>2014</td>
<td>United States</td>
<td>Literature review</td>
<td>Reduced adherence to ART and risky sexual behavior</td>
</tr>
<tr>
<td>AIDS Res Hum Retroviruses.</td>
<td>2014</td>
<td>United States</td>
<td>Cross-sectional study</td>
<td>Low virological suppression</td>
</tr>
<tr>
<td>Int J Behav Med.</td>
<td>2014</td>
<td>Georgia</td>
<td>Cross-sectional study</td>
<td>Low viral suppression and lower adherence to treatment</td>
</tr>
<tr>
<td>Curr HIV Res.</td>
<td>2014</td>
<td>United States</td>
<td>Cross-sectional study</td>
<td>Progression to advanced stage / aids, low CD4 + T lymphocyte count, increased susceptibility to opportunistic infections and lower adherence to medications</td>
</tr>
<tr>
<td>Scientific World Journal.</td>
<td>2013</td>
<td>United States</td>
<td>Cross-sectional study</td>
<td>Increased blood pressure</td>
</tr>
<tr>
<td>Brasilia Med.</td>
<td>2013</td>
<td>Brazil</td>
<td>Case report</td>
<td>Immune system dysfunction and thrombocytopenia, in addition to increased susceptibility to infectious and opportunistic diseases</td>
</tr>
<tr>
<td>HIV Med.</td>
<td>2013</td>
<td>England</td>
<td>Cross-sectional study</td>
<td>Risky sexual behavior, such as intercourse without condoms and with serodiscordant partners</td>
</tr>
<tr>
<td>AIDS Res Hum Retroviruses.</td>
<td>2013</td>
<td>United States</td>
<td>Cross-sectional study</td>
<td>Increased risk of non-adherence to pharmacological treatment</td>
</tr>
<tr>
<td>J Acquir Immune Defic Syndr.</td>
<td>2012</td>
<td>United States</td>
<td>Clinical trial</td>
<td>Toxic effects on the body</td>
</tr>
<tr>
<td>Biol Psychiatry</td>
<td>2012</td>
<td>United States</td>
<td>Cohort study</td>
<td>Deeper and consistent cerebral volume loss</td>
</tr>
<tr>
<td>J Subst Use.</td>
<td>2012</td>
<td>United States</td>
<td>Cross-sectional study</td>
<td>Multiple partners, unprotected sex</td>
</tr>
<tr>
<td>Expert Opin Drug Metab Toxicol.</td>
<td>2012</td>
<td>United States</td>
<td>Systematic review</td>
<td>Increased neuronal toxicity; reduced adherence to ART and reduced quality of life; greater immune suppression and a faster progression to AIDS; exacerbation of neuroinflammation and neuropsychological impairment</td>
</tr>
<tr>
<td>AIDS Care.</td>
<td>2011</td>
<td>United States</td>
<td>Cohort study</td>
<td>Reduced adherence to ART</td>
</tr>
<tr>
<td>Subst Abus.</td>
<td>2011</td>
<td>United States</td>
<td>Cross-sectional study</td>
<td>Non-adherence to ART</td>
</tr>
<tr>
<td>Drug Alcohol Depend.</td>
<td>2011</td>
<td>United States</td>
<td>Cohort study</td>
<td>Depressive symptoms</td>
</tr>
</tbody>
</table>
Regarding the thematic categories, there was a predominance of articles that addressed the metabolic and neurological effects of alcohol (Category 1). Among these effects, brain cell degradation was highlighted, with the consequent elevation of neuroinflammation markers, besides neurocognitive disorders, such as dementia and memory loss. In relation to metabolic alterations, nutritional deficit stood out, with the reduction of micronutrients (such as vitamins A, B, C, D and E, in addition to the minerals zinc, iron and selenium), directly influencing the immune system dysfunction and susceptibility to infectious diseases. Alcohol also had a negative influence on the quality of life of these patients, reducing their perception of the domains of quality of life. Concerning the development of diseases, depressive disorders and systemic arterial hypertension were
highlighted, together with increased anxiety sensitivity. Furthermore, the risk of interactions between alcohol and other drugs was observed, which may lead to more toxicity to the organism (Tables 1 and 2).

Sixteen studies addressed the effects of alcohol on ART adherence (Category 2), demonstrating that alcohol consumption reduces the ability to adhere to the therapeutic regimen in PLHA, which negatively influences health, due to the reduction of CD4+ T lymphocytes and increased viral load (Tables 1 and 2).

Category 3 demonstrates that alcohol use increases the chances of virus transmission and the possibility of re-infection, with a consequent increase in viral resistance. The lack of use of condoms draws attention and is linked to alcohol consumption during sex. These risky behaviors may be accompanied by the non-disclosure of the HIV-positive serological status to the partner, along with multiplicity of partners (Tables 1 and 2).

Regarding the increased disease progression (Category 4), viral load elevation and reduction in CD4+ T lymphocyte counts were identified, representing markers of disease progression. As a result, the patient’s state of health is aggravated, leading to the final stage of the disease, which may cause death (Tables 1 and 2).

Table 2: Number of articles supporting each thematic category, according to the topics covered. Fortaleza, Ceará, Brazil 2017.

<table>
<thead>
<tr>
<th>Category</th>
<th>Number of articles</th>
</tr>
</thead>
<tbody>
<tr>
<td>Neurological and metabolic effects of alcohol</td>
<td>21</td>
</tr>
<tr>
<td>Effects of alcohol on ART adherence</td>
<td>16</td>
</tr>
<tr>
<td>Increased risk of HIV transmission</td>
<td>5</td>
</tr>
<tr>
<td>Increased disease progression</td>
<td>9</td>
</tr>
<tr>
<td>TOTAL</td>
<td>51*</td>
</tr>
</tbody>
</table>

* Note: Some articles were classified in more than one category.

DISCUSSION

This research helped describe the effects of alcohol on the metabolism, the central nervous system, adherence to ART and an increased risk of disease transmission and progression in PLHA. The analysis of the levels of evidence showed a predominance of level VI, that is, evidence from descriptive or qualitative studies(8).

Regarding the neurological effects of alcohol consumption in PLHA, alcohol has been shown to produce morbidity in the central nervous system, especially in frontal regions of the brain, which control executive and motor functions(47). When a comorbidity exists, these effects tend to manifest earlier, leading to deleterious effects on the cerebral cortex(52), such as degradation of the cells, reduction of white(45) and gray brain matter(51), reduction of the corpus callosum microstructure(46) and cerebral volume loss, especially in the lateral, frontal, temporal, parental and occipital regions, besides the thalamus and corpus callosum(27). In addition, these were also identified: ventricular hypertrophy, significant harm to the myelin sheath, reduction in markers of living neurons(39,47), and elevation of neuroinflammation markers(16).

Evidence shows that neurological and cognitive disorders are accentuated over the years, as a result of the disease onset time; when there is a correlation with alcohol, these effects become even worse, causing considerable health harm to these patients(15,36). The exaggerated use of alcohol in PLHA (an average of five to seven beverage doses per day, four days a week) was directly associated with a neurotrophic factor derived from the brain when compared to those who do not consume alcohol or those who use it sporadically; thus being a significant contributor to the development of neurocognitive disorders associated with HIV. Among these associated disorders dementia and memory loss stood out(15).

Concerning the development of diseases, the risk of developing depressive symptoms was highlighted, which may be associated with the reduction of ART adherence and the progression of the disease\cite{38,44}. Moreover, there is the additional risk of developing systemic hypertension\cite{33} and anxiety sensitivity, which is considered a risk factor for the development of anxiety and depression disorders\cite{10}.

Regarding the metabolic effects, it is worth noting that ethyl alcohol plays a significant adverse role on the thymus volume and on the reduction in platelet counts. Thrombocytopenia is directly related to the viral load and to the disease progression, being associated with increased morbidity and mortality due to the deterioration of CD4 + T lymphocytes\cite{23}, besides the higher risk of developing anemia\cite{49}.

Regarding the effect of alcohol on the adherence to ART, it was found that the higher the alcohol consumption, the higher the non-adherence rate to ART, which leads to the progression and multiplication of HIV\cite{34,36,37,41}. Differences between genders were identified and it was observed that women who drink alcohol are more likely to not adhere to the treatment regimen when compared to men\cite{35}.

In addition, excessive alcohol consumption may cause interactions with medications and alter the drug binding protein, where ethanol competes with the drugs in the isozyme linkages of the metabolism process. Thus, these consumers may be at increased risk for adverse events, antiretroviral toxicity and ineffective therapy when compared to placebo groups\cite{26}, due to inadequate concentration of the drug in the plasma\cite{38}. These patients are more socially vulnerable and require harm reduction strategies to increase the chances of successful ART\cite{25}.

Considering the effects of alcohol and risk of HIV transmission, it has been shown that there is an increased risk of re-infection, dissemination and viral resistance, leading to negative health effects\cite{37}. Alcohol is considered an easily accessible drug and is present at occasions of socialization and celebrations where there are encounters between sexual partners, associated with the reduction of condom use in stable and casual relationships\cite{55}.

Alcohol consumption in PLHA can lead to the acquisition of risk behaviors, such as unprotected sexual practices and multiplicity of partners\cite{24,37,40}. Evidence shows that each dose of alcohol consumed increases the chances of unprotected sexual intercourse by around 73%\cite{52}, however, it is not possible to take into account only alcohol as an influencing factor, since individual and situational circumstances are also involved\cite{43}.

Regarding the impact of the use of this substance on the progression of HIV/AIDS, it has been observed that alcohol use has deleterious effects on the immune response, which may influence the increase of infections, disorders in B lymphocyte functions and chronic activation of T lymphocytes, accelerating the progression of the disease, leading to increased susceptibility to opportunistic infections such as tuberculosis, bacterial pneumonia and viral hepatitis\cite{16}. It also produces effects on the transfer of intestinal bacteria that provoke immune activation against HIV, resulting in the progression of the disease\cite{38}.

Thus, alcohol consumption in PLHA has a strong association with the increased morbidity and mortality of these individuals, since this comorbidity is directly related to markers of disease progression, factors that negatively influence the domains of quality of life\cite{46}. Evidence indicates that alcohol users were nine times more likely to have CD4 + T lymphocyte counts below 200 cells / mm3, and this association was independent of adherence to ART\cite{12}. Besides the influence on the reduction of immune system cells, its relation to the increase
in viral load\cite{36,37} stands out, since alcohol consumption can suppress the immune system and stimulate virus replication\cite{32,56}.

CONCLUSION

This review allowed the identification of several negative effects of alcohol consumption on PLHA, with an emphasis on neurological and metabolic changes, adherence to ART, increased HIV transmission and disease progression; indicating the need for educational strategies to prevent and reduce alcohol consumption, that seek to identify the main factors that lead to the consumption of this substance, in order to propose targeted measures and individualized care.

Studies with this approach may help nurses and other health professionals to recognize the impacts of alcohol use on this population, so as to instrumentalize them for the implementation of interventions according to the life context of each patient, and activate social support networks when necessary. It is recommended to carry out studies that evaluate the effectiveness of interventions with this purpose.

One limitation of this review was the lack of research on antiretrovirals that interact with alcohol, and studies that indicate the difference between the effects of alcohol on the female and male population.

REFERENCES

52. Fein G, Biggins CA, Mackay S. Alcohol abuse and HIV infection have additive effects on frontal cortex function as measured by auditory evoked potential P3A latency. Biol Psychiatry. [Internet]. 1995 [cited 10 set 2016];37(3):183-95. Available from: http://dx.doi.org/10.1016/0006-3223(94)00119-N.

